Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306684

RESUMO

Therapeutic angiogenesis is pivotal in creating effective tissue-engineered constructs that deliver nutrients and oxygen to surrounding cells. Hence, biomaterials that promote angiogenesis can enhance the efficacy of various medical treatments, encompassing tissue engineering, wound healing, and drug delivery systems. Considering these, we propose a rapid method for producing composite silicon-boron-wool keratin/jellyfish collagen (Si-B-WK/JFC) inorganic-organic biohybrid films using sol-gel reactions. In this approach, reactive tetraethyl orthosilicate and boric acid (pKa ⩾ 9.24) were used as silicon and boron sources, respectively, and a solid-state gel was formed through the condensation reaction of these reactive groups with the keratin/collagen mixture. Once the resulting gel was thoroughly suspended in water, the films were prepared by a casting/solvent evaporation methodology. The fabricated hybrid films were characterized structurally and mechanically. In addition, angiogenic characteristics were determined by the in ovo chick chorioallantoic membrane assay, which revealed an increased vascular network within the Si-B-WK/JFC biohybrid films. In conclusion, it is believed that Si-B-WK/JFC biohybrid films with mechanical and pro-angiogenic properties have the potential to be possessed in soft tissue engineering applications, especially wound healing.


Assuntos
Cifozoários , Engenharia Tecidual , Animais , Engenharia Tecidual/métodos , Queratinas , Boro , Dióxido de Silício , Silício , , Colágeno
2.
ACS Appl Bio Mater ; 4(9): 7266-7279, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006956

RESUMO

Tissue engineering and regenerative medicine have evolved into a different concept, the so-called clinical tissue engineering. Within this context, the synthesis of next-generation inorganic-organic hybrid constructs without the use of chemical crosslinkers emerges with a great potential for treating bone defects. Here, we propose a sophisticated approach for synthesizing cost-effective boron (B)- and silicon (Si)-incorporated collagen/hair keratin (B-Si-Col-HK) cryogels with the help of sol-gel reactions. In this approach, collagen and hair keratin were engaged with a B-Si network using tetraethyl orthosilicate as a silica precursor, and the obtained cryogels were characterized in depth with attenuated total reflectance-Fourier transform infrared spectroscopy, solid-state NMR, X-ray diffraction, thermogravimetric analysis, porosity and swelling tests, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyses, frequency sweep and temperature-dependent rheology, contact angle analysis, micromechanical tests, and scanning electron microscopy with energy dispersive X-ray analysis. In addition, the cell survival and osteogenic features of the cryogels were evaluated by the MTS test, live/dead assay, immuno/histochemistry, and quantitative real-time polymerase chain reaction analyses. We conclude that the B-Si-networked Col-HK cryogels having good mechanical durability and osteoinductive features would have the potential bone formation capability.


Assuntos
Boro , Criogéis , Colágeno/química , Criogéis/química , Humanos , Queratinas Específicas do Cabelo , Osteogênese/genética , Silício , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Biotechnol Prog ; 35(4): e2814, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30963718

RESUMO

In this study, we aimed at generating 3-dimensional (3D) decellularized bovine spinal cord extracellular matrix-based scaffolds (3D-dCBS) for neural tissue engineering applications. Within this scope, bovine spinal cord tissue pieces were homogenized in 0.1 M NaOH and this viscous mixture was molded to attain 3D bioscaffolds. After resultant bioscaffolds were chemically crosslinked, the decellularization process was conducted with detergent, buffer, and enzyme solutions. Nuclear remnants in the native tissue and 3D-dCBS were determined with DNA content analysis and agarose gel electrophoresis. Afterward, 3D-dCBS were biochemically characterized in depth via glycosaminoglycan (GAG) content, hydroxyproline (HYP) assay, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cellular survival of human adipose-derived mesenchymal stem cells (hAMSCs) on the 3D-dCBS for 3rd, 7th, and 10th days was assessed via MTT assay. Scaffold and cell/scaffold constructs were also evaluated with scanning electron microscopy and histochemical studies. DNA contents for native and 3D-dCBS were respectively found to be 520.76 ± 18.11 and 28.80 ± 0.20 ng/mg dry weight (n = 3), indicating a successful decellularization process. GAG content, HYP assay, and SDS-PAGE results proved that the extracellular matrix was substantially preserved during the decellularization process. In conclusion, it is believed that the novel decellularization method may allow fabricating 3D bioscaffolds with desired geometry from soft nervous system tissues.


Assuntos
Matriz Extracelular , Tecido Nervoso/citologia , Medula Espinal/citologia , Engenharia Tecidual , Animais , Bovinos , Células Cultivadas , Eletroforese em Gel de Ágar , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
4.
J Mater Sci Mater Med ; 29(8): 127, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30056552

RESUMO

In this study, we aimed at fabricating decellularized bovine myocardial extracellular matrix-based films (dMEbF) for cardiac tissue engineering (CTE). The decellularization process was carried out utilizing four consecutive stages including hypotonic treatment, detergent treatment, enzymatic digestion and decontamination, respectively. In order to fabricate the dMEbF, dBM were digested with pepsin and gelation process was conducted. dMEbF were then crosslinked with N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (NHS/EDC) to increase their durability. Nuclear contents of native BM and decellularized BM (dBM) tissues were determined with DNA content analysis and agarose-gel electrophoresis. Cell viability on dMEbF for 3rd, 7th, and 14th days was assessed by MTT assay. Cell attachment on dMEbF was also studied by scanning electron microscopy. Trans-differentiation capacity of human adipose-derived mesenchymal stem cells (hAMSCs) into cardiomyocyte-like cells on dMEbF were also evaluated by histochemical and immunohistochemical analyses. DNA contents for native and dBM were, respectively, found as 886.11 ± 164.85 and 47.66 ± 0.09 ng/mg dry weight, indicating a successful decellularization process. The results of glycosaminoglycan and hydroxyproline assay, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), performed in order to characterize the extracellular matrix (ECM) composition of native and dBM tissue, showed that the BM matrix was not damaged during the proposed method. Lastly, regarding the histological study, dMEbF not only mimics native ECM, but also induces the stem cells into cardiomyocyte-like cells phenotype which brings it the potential of use in CTE.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/química , Membranas Artificiais , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Bovinos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Miocárdio/química , Miócitos Cardíacos/efeitos dos fármacos , Tecidos Suporte
5.
Colloids Surf B Biointerfaces ; 154: 160-170, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334693

RESUMO

In the present study, we aimed at fabricating an osteoinductive biocomposite scaffold using keratin obtained from human hair, jellyfish collagen and eggshell-derived nano-sized spherical hydroxyapatite (nHA) for bone tissue engineering applications. Keratin, collagen and nHA were characterized with the modified Lowry method, free-sulfhydryl groups and hydroxyproline content analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA) which confirmed the success of the extraction and/or isolation processes. Human adipose mesenchymal stem cells (hAMSCs) were isolated and the cell surface markers were characterized via flow cytometry analysis in addition to multilineage differentiation capacity. The undifferentiated hAMSCs were highly positive for CD29, CD44, CD73, CD90 and CD105, but were not seen to express hematopoietic cell surface markers such as CD14, CD34 and CD45. The cells were successfully directed towards osteogenic, chondrogenic and adipogenic lineages in vitro. The microarchitecture of the scaffolds and cell attachment were evaluated using scanning electron microscopy (SEM). The cell viability on the scaffolds was assessed by the MTT assay which revealed no evidence of cytotoxicity. The osteogenic differentiation of hAMSCs on the scaffolds was determined histologically using alizarin red S, osteopontin and osteonectin stainings. Early osteogenic differentiation markers of hAMSCs were significantly expressed on the collagen-keratin-nHA scaffolds. In conclusion, it is believed that collagen-keratin-nHA osteoinductive biocomposite scaffolds have the potential of being used in bone tissue engineering.


Assuntos
Substitutos Ósseos/química , Colágeno/química , Durapatita/química , Queratinas Específicas do Cabelo/química , Osteogênese , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Casca de Ovo/química , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Nanocompostos/ultraestrutura , Medicina Regenerativa , Cifozoários/química , Tecidos Suporte/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...